Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
1.
EMBO J ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580776

RESUMO

The in vitro oxygen microenvironment profoundly affects the capacity of cell cultures to model physiological and pathophysiological states. Cell culture is often considered to be hyperoxic, but pericellular oxygen levels, which are affected by oxygen diffusivity and consumption, are rarely reported. Here, we provide evidence that several cell types in culture actually experience local hypoxia, with important implications for cell metabolism and function. We focused initially on adipocytes, as adipose tissue hypoxia is frequently observed in obesity and precedes diminished adipocyte function. Under standard conditions, cultured adipocytes are highly glycolytic and exhibit a transcriptional profile indicative of physiological hypoxia. Increasing pericellular oxygen diverted glucose flux toward mitochondria, lowered HIF1α activity, and resulted in widespread transcriptional rewiring. Functionally, adipocytes increased adipokine secretion and sensitivity to insulin and lipolytic stimuli, recapitulating a healthier adipocyte model. The functional benefits of increasing pericellular oxygen were also observed in macrophages, hPSC-derived hepatocytes and cardiac organoids. Our findings demonstrate that oxygen is limiting in many terminally-differentiated cell types, and that considering pericellular oxygen improves the quality, reproducibility and translatability of culture models.

2.
Int J Biol Macromol ; 267(Pt 1): 131386, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582458

RESUMO

Verteporfin (VER), a photosensitizer used in macular degeneration therapy, has shown promise in controlling macrophage polarization and alleviating inflammation in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). However, its hydrophobicity, limited bioavailability, and side effects hinder its therapeutic potential. In this study, we aimed to enhance the therapeutic potential of VER through pulmonary nebulized drug delivery for ALI/ARDS treatment. We combined hydrophilic hyaluronic acid (HA) with an oil-in-water system containing a poly(lactic acid-co-glycolic acid) (PLGA) copolymer of VER to synthesize HA@PLGA-VER (PHV) nanoparticles with favorable surface characteristics to improve the bioavailability and targeting ability of VER. PHV possesses suitable electrical properties, a narrow size distribution (approximately 200 nm), and favorable stability. In vitro and in vivo studies demonstrated the excellent biocompatibility, safety, and anti-inflammatory responses of the PHV by suppressing M1 macrophage polarization while inducing M2 polarization. The in vivo experiments indicated that the treatment with aerosolized nano-VER (PHV) allowed more drugs to accumulate and penetrate into the lungs, improved the pulmonary function and attenuated lung injury, and mortality of ALI mice, achieving improved therapeutic outcomes. These findings highlight the potential of PHV as a promising delivery system via nebulization for enhancing the therapeutic effects of VER in ALI/ARDS.

3.
Food Chem ; 449: 139227, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38599108

RESUMO

Metabolomics, the systematic study of metabolites, is dedicated to a comprehensive analysis of all aspects of plant-based food research and plays a pivotal role in the nutritional composition and quality control of plant-based foods. The diverse chemical compositions of plant-based foods lead to variations in sensory characteristics and nutritional value. This review explores the application of the metabolomics method to plant-based food origin tracing, cultivar identification, and processing methods. It also addresses the challenges encountered and outlines future directions. Typically, when combined with other omics or techniques, synergistic and complementary information is uncovered, enhancing the classification and prediction capabilities of models. Future research should aim to evaluate all factors affecting food quality comprehensively, and this necessitates advanced research into influence mechanisms, metabolic pathways, and gene expression.

4.
Phytomedicine ; 128: 155432, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38518645

RESUMO

BACKGROUND: Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE: This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS: The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS: A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION: In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.

5.
Cell Death Dis ; 15(3): 205, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467631

RESUMO

Temozolomide (TMZ), a DNA alkylating agent, has become the primary treatment for glioma, the most common malignancy of the central nervous system. Although TMZ-containing regimens produce significant clinical response rates, some patients inevitably suffer from inferior treatment outcomes or disease relapse, likely because of poor chemosensitivity of glioma cells due to a robust DNA damage response (DDR). GINS2, a subunit of DNA helicase, contributes to maintaining genomic stability and is highly expressed in various cancers, promoting their development. Here, we report that GINS2 was upregulated in TMZ-treated glioma cells and co-localized with γH2AX, indicating its participation in TMZ-induced DDR. Furthermore, GINS2 regulated the malignant phenotype and TMZ sensitivity of glioma cells, mostly by promoting DNA damage repair by affecting the mRNA stability of early growth response factor 1 (EGR1), which in turn regulates the transcription of epithelial cell-transforming sequence 2 (ECT2). We constructed a GINS2-EGR1-ECT2 prognostic model, which accurately predicted patient survival. Further, we screened Palbociclib/BIX-02189 which dampens GINS2 expression and synergistically inhibits glioma cell proliferation with TMZ. These findings delineate a novel mechanism by which GINS2 regulates the TMZ sensitivity of glioma cells and propose a promising combination therapy to treat glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Temozolomida/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Células Epiteliais/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteínas Proto-Oncogênicas/farmacologia , Proteínas Cromossômicas não Histona
6.
Int J Nanomedicine ; 19: 2611-2623, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505166

RESUMO

Background: The photodynamic therapy (PDT) showed promising potential in treating tongue squamous cell carcinoma (TSCC). The Food and Drug Administration approved Verteporfin (Ver) is a powerful alternative in this field for its penetrating power and high production of reactive oxygen species (ROS). However, its applications in the treatment of TSCC are still rare. Methods: Ver was loaded onto Poly (lactic-co-glycolic acid) (PLGA) nanoparticles, followed by the modification with RGD peptide as the ligand. The nanostructured was named as RPV. In vitro assessments were conducted to evaluate the cytotoxicity of RPV through the Live/Dead assay analysis and Cell Counting Kit-8 (CCK-8) assay. Using the reactive oxygen species assay kit, the potential for inducing targeted tumor cell death upon laser irradiation by promoting ROS production was investigated. In vivo experiments involved with the biological distribution of RPV, the administration with RPV followed by laser irradiation, and the measurement of the tumor volumes. Immunohistochemical analysis was used to detect the Ki-67 expression, and apoptosis induced by RPV-treated group. Systemic toxicity was evaluated through hematoxylin-eosin staining and blood routine analysis. Real-time monitoring was employed to track RPV accumulation at tumor sites. Results: The in vitro assessments demonstrated the low cytotoxicity of RPV and indicated its potential for targeted killing TSCC cells under laser irradiation. In vivo experiments revealed significant tumor growth inhibition with RPV treatment and laser irradiation. Immunohistochemical analysis showed a notable decrease in Ki-67 expression, suggesting the effective suppression of cell proliferation, and TUNEL assay indicated the increased apoptosis in the RPV-treated group. Pathological examination and blood routine analysis revealed no significant systemic toxicity. Real-time monitoring exhibited selective accumulation of RPV at tumor sites. Conclusion: The findings collectively suggest that RPV holds promise as a safe and effective therapeutic strategy for TSCC, offering a combination of targeted drug delivery with photodynamic therapy.


Assuntos
Carcinoma de Células Escamosas , Nanopartículas , Fotoquimioterapia , Neoplasias da Língua , Humanos , Verteporfina/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Neoplasias da Língua/tratamento farmacológico , Neoplasias da Língua/metabolismo , Neoplasias da Língua/patologia , Espécies Reativas de Oxigênio/metabolismo , Antígeno Ki-67 , Linhagem Celular Tumoral , Língua/metabolismo , Língua/patologia , Fármacos Fotossensibilizantes
7.
BMJ Open ; 14(3): e080032, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508642

RESUMO

INTRODUCTION: In recent years, the influence of artificial intelligence technology on clinical trials has been steadily increasing. It has brought about significant improvements in the efficiency and cost reduction of clinical trials. The objective of this scoping review is to systematically map, describe and summarise the current utilisation of artificial intelligence in recruitment and retention process of clinical trials that has been reported in research. Additionally, the review aims to identify benefits and drawbacks, as well as barriers and facilitators associated with the application of artificial intelligence in optimising recruitment and retention in clinical trials. The findings of this review will provide insights and recommendations for future development of artificial intelligence in the context of clinical trials. METHODS AND ANALYSIS: The review of relevant literature will follow the methodological framework for scoping studies provided by the Joanna Briggs Institute. A comprehensive electronic search will be conducted using the search strategy developed by the authors. Leading medical and computer science databases such as PubMed, Embase, Scopus, IEEE Xplore and Web of Science Core Collection will be searched. The search will encompass analytical observational studies, descriptive observational studies, experimental and quasi-experimental studies published in all languages, without any time limitations, which use artificial intelligence tools in the recruitment and retention process of clinical trials. The review team will screen the identified studies and import them into a dedicated electronic library specifically created for this review. Data extraction will be performed using a data charting table. ETHICS AND DISSEMINATION: Secondary data will be attained in this scoping review; therefore, no ethical approval is required. The results of the final review will be published in a peer-reviewed journal. It is expected that results will inform future artificial intelligence and clinical trials research.


Assuntos
Inteligência Artificial , Projetos de Pesquisa , Humanos , Revisão por Pares , Literatura de Revisão como Assunto
8.
Drug Resist Updat ; 73: 101060, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309140

RESUMO

Cancer lactate metabolic reprogramming induces an elevated level of extracellular lactate and H+, leading to an acidic immunosuppressive tumor microenvironment (TEM). High lactic acid level may affect the metabolic programs of various cells that comprise an antitumor immune response, therefore, restricting immune-mediated tumor destruction, and leading to therapeutic resistance and unsatisfactory prognosis. Here, we report a metal-phenolic coordination-based nanocomplex loaded with a natural polyphenol galloflavin, which inhibits the function of lactate dehydrogenase, reducing the production of lactic acid, and alleviating the acidic immunosuppressive TME. Besides, the co-entrapped natural polyphenol carnosic acid and the synthetic PEG-Ce6 polyphenol derivative (serving as a photosensitizer) could induce immunogenic cancer cell death upon laser irradiation, which further activates immune system and promotes immune cell recruitment and infiltration in tumor tissues. We demonstrated that this nanocomplex-based combinational therapy could reshape the TME and elicit immune responses in a murine breast cancer model, which provides a promising strategy to enhance the therapeutic efficiency of drug-resistant breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias , Humanos , Animais , Camundongos , Feminino , Ácido Láctico , Polifenóis/farmacologia , 60645 , Neoplasias/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Fenóis , Microambiente Tumoral
9.
FASEB J ; 38(3): e23458, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38315453

RESUMO

Diabetic kidney disease (DKD), a major microvascular complication of diabetes, is characterized by its complex pathogenesis, high risk of chronic renal failure, and lack of effective diagnosis and treatment methods. GSK3ß (glycogen synthase kinase 3ß), a highly conserved threonine/serine kinase, was found to activate glycogen synthase. As a key molecule of the glucose metabolism pathway, GSK3ß participates in a variety of cellular activities and plays a pivotal role in multiple diseases. However, these effects are not only mediated by affecting glucose metabolism. This review elaborates on the role of GSK3ß in DKD and its damage mechanism in different intrinsic renal cells. GSK3ß is also a biomarker indicating the progression of DKD. Finally, the protective effects of GSK3ß inhibitors on DKD are also discussed.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Glicogênio Sintase Quinase 3 beta , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Rim/metabolismo
10.
Sci Total Environ ; 921: 171122, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395165

RESUMO

Wildfires produce smoke that can affect an area >1000 times the burn extent, with far-reaching human health, ecologic, and economic impacts. Accurately estimating aerosol load within smoke plumes is therefore crucial for understanding and mitigating these impacts. We evaluated the effectiveness of the latest Collection 6.1 MODIS Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm in estimating aerosol optical depth (AOD) across the U.S. during the historic 2020 wildfire season. We compared satellite-based MAIAC AOD to ground-based AERONET AOD measurements during no-, light-, medium-, and heavy-smoke conditions identified using the Hazard Mapping System Fire and Smoke Product. This smoke product consists of maximum extent smoke polygons digitized by analysts using visible band imagery and classified according to smoke density. We also examined the strength of the correlations between satellite- and ground-based AOD for major land cover types under various smoke density levels. MAIAC performed well in estimating AOD during smoke-affected conditions. Correlations between MAIAC and AERONET AOD were strong for medium- (r = 0.91) and heavy-smoke (r = 0.90) density, and MAIAC estimates of AOD showed little bias relative to ground-based AERONET measurements (normalized mean bias = 3 % for medium, 5 % for heavy smoke). During two high AOD, heavy smoke episodes, MAIAC underestimated ground-based AERONET AOD under mixed aerosol (i.e., smoke and dust; median bias = -0.08) and overestimated AOD under smoke-dominated (median bias = 0.02) aerosol. MAIAC most overestimated ground-based AERONET AOD over barren land (mean NMB = 48 %). Our findings indicate that MODIS MAIAC can provide robust estimates of AOD as smoke density increases in coming years. Increased frequency of mixed aerosol and expansion of developed land could affect the performance of the MAIAC algorithm in the future, however, with implications for evaluating wildfire-associated health and welfare effects and air quality standards.

11.
Nat Commun ; 15(1): 1266, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341401

RESUMO

Ubiquitination, catalyzed usually by a three-enzyme cascade (E1, E2, E3), regulates various eukaryotic cellular processes. E3 ligases are the most critical components of this catalytic cascade, determining both substrate specificity and polyubiquitination linkage specificity. Here, we reveal the mechanism of a naturally occurring E3-independent ubiquitination reaction of a unique human E2 enzyme UBE2E1 by solving the structure of UBE2E1 in complex with substrate SETDB1-derived peptide. Guided by this peptide sequence-dependent ubiquitination mechanism, we developed an E3-free enzymatic strategy SUE1 (sequence-dependent ubiquitination using UBE2E1) to efficiently generate ubiquitinated proteins with customized ubiquitinated sites, ubiquitin chain linkages and lengths. Notably, this strategy can also be used to generate site-specific branched ubiquitin chains or even NEDD8-modified proteins. Our work not only deepens the understanding of how an E3-free substrate ubiquitination reaction occurs in human cells, but also provides a practical approach for obtaining ubiquitinated proteins to dissect the biochemical functions of ubiquitination.


Assuntos
Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases , Humanos , Peptídeos/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação , Engenharia de Proteínas
12.
Angew Chem Int Ed Engl ; 63(4): e202316710, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38061992

RESUMO

Multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters with narrow emission spectra have garnered significant attention in future organic light-emitting diode (OLED) displays. However, current C=O/N-embedded MR-TADF systems still lack satisfactory performance in terms of electroluminescence bandwidths and external quantum efficiencies (EQEs). In this study, a C=O/N-embedded green MR-TADF emitter, featuring two acridone units incorporated in a sterically protected 11-ring fused core skeleton, is successfully synthesized through finely controlling the reaction selectivity. The superior combination of multiple intramolecular fusion and steric wrapping strategies in the design of the emitter not only imparts an extremely narrow emission spectrum and a high fluorescence quantum yield to the emitter but also mitigates aggregation-induced spectral broadening and fluorescence quenching. Therefore, the emitter exhibits leading green OLED performance among C=O/N-based MR-TADF systems, achieving an EQE of up to 37.2 %, a full width at half maximum of merely 0.11 eV (24 nm), and a Commission Internationale de l'Éclairage coordinate of (0.20, 0.73). This study marks a significant advance in the realization of ideal C=O/N-based MR-TADF emitters and holds profound implications for the design and synthesis of other MR-TADF systems.

13.
MedComm (2020) ; 4(6): e449, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38098610

RESUMO

Lung adenocarcinoma (LUAD) is the most common form of lung cancer, with a consistently low 5-year survival rate. Therefore, we aim to identify key genes involved in LUAD progression to pave the way for targeted therapies in the future. BDH1 plays a critical role in the conversion between acetoacetate and ß-hydroxybutyrate. The presence of ß-hydroxybutyrate is essential for initiating lysine ß-hydroxybutyrylation (Kbhb) modifications. Histone Kbhb at the H3K9 site is attributed to transcriptional activation. We unveiled that ß-hydroxybutyrate dehydrogenase 1 (BDH1) is not only conspicuously overexpressed in LUAD, but it also modulates the overall intracellular Kbhb modification levels. The RNA sequencing analysis revealed leucine-rich repeat-containing protein 31 (LRRC31) as a downstream target gene regulated by BDH1. Ecologically expressed BDH1 hinders the accumulation of H3K9bhb in the transcription start site of LRRC31, consequently repressing the transcriptional expression of LRRC31. Furthermore, we identified potential BDH1 inhibitors, namely pimozide and crizotinib, which exhibit a synergistic inhibitory effect on the proliferation of LUAD cells exhibiting high expression of BDH1. In summary, this study elucidates the molecular mechanism by which BDH1 mediates LUAD progression through the H3K9bhb/LRRC31 axis and proposes a therapeutic strategy targeting BDH1-high-expressing LUAD, providing a fresh perspective for LUAD treatment.

14.
Chem Commun (Camb) ; 59(98): 14559-14562, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37964745

RESUMO

Herein, a novel organic transformation involving rhodium-catalyzed divergent dehydroxylation/alkenylation of hydroxyisoindolinone with vinylene carbonate is reported, and a series of architecturally rigid and widely used spirolactams are obtained with excellent functional group tolerance and high selectivity. Remarkably, the promising vinylene carbonate reagent presents a distinct chemical reactivity as a vinyl-oxygen cyclic synthon and first transfers the C-H bond to spiroheterocycle scaffolds. Moreover, another chemoselectivity, direct dehydrogenative coupling with vinylene carbonate, is also presented. This protocol is compatible with green chemistry and only releases H2O and CO2 as byproducts.

16.
Sci Data ; 10(1): 842, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036585

RESUMO

Aerosol Optical Depth (AOD) is a crucial atmospheric parameter in comprehending climate change, air quality, and its impacts on human health. Satellites offer exceptional spatiotemporal AOD data continuity. However, data quality is influenced by various atmospheric, landscape, and instrumental factors, resulting in data gaps. This study presents a new solution to this challenge by providing a long-term, gapless satellite-derived AOD dataset for Texas from 2010 to 2022, utilizing Moderate Resolution Imaging Spectroradiometer (MODIS) Multi-angle Implementation of Atmospheric Correction (MAIAC) products. Missing AOD data were reconstructed using a spatiotemporal Long Short-Term Memory (LSTM) convolutional autoencoder. Evaluation against an independent test dataset demonstrated the model's effectiveness, with an average Root Mean Square Error (RMSE) of 0.017 and an R2 value of 0.941. Validation against the ground-based AERONET dataset indicated satisfactory agreement, with RMSE values ranging from 0.052 to 0.067. The reconstructed AOD data are available at daily, monthly, quarterly, and yearly scales, providing a valuable resource to advance understanding of the Earth's atmosphere and support decision-making concerning air quality and public health.


Assuntos
Poluentes Atmosféricos , Memória de Curto Prazo , Humanos , Aerossóis/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Memória de Curto Prazo/efeitos dos fármacos , Material Particulado/análise
17.
Int J Nanomedicine ; 18: 6185-6198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37933297

RESUMO

Background: Photodynamic therapy (PDT) has emerged as a promising strategy for oral cancer treatment. Verteporfin is a powerful photosensitizer and widely used in the treatment of macular degeneration. However, rare work has reported its potential in the treatment of oral cancer. Methods: In this study, we introduce an innovative approach of nano-photosensitizer based on Verteporfin, which was prepared by utilizing macrophage membrane to coat Verteporfin-loaded zeolitic imidazolate framework 8 (ZIF-8) for effective photodynamic therapy against oral cancer. Nanoparticle characteristics were assessed including size, zeta potential, and PDI. Cellular uptake studies were conducted using CAL-27 cells. Furthermore, inhibitory effects in both in vitro and in vivo settings were observed, ensuring biosafety. Assessment of anticancer efficacy involved tumor volume measurement, histological analyses, and immunohistochemical staining. Results: In vitro experiments indicated that the nano-photosensitizer showed efficient cellular uptake in the oral cancer cells. Upon the laser irradiation, the nano-photosensitizer induced the generation of reactive oxygen species (ROS), leading to cancer cell apoptosis. The in vivo experiments indicated that the coating with cell membranes enhanced the circulation time of nano-photosensitizer. Moreover, the specificity of the nano-photosensitizer to the cancer cells was also improved by the cell membrane-camouflaged structure in the tumor-bearing mouse model, which inhibited the tumor growth significantly by the photodynamic effect in the presence of laser irradiation. Conclusion: Overall, our findings demonstrate the potential of macrophage membrane-coated ZIF-8-based nanoparticles loaded with Verteporfin for effective photodynamic therapy in oral cancer treatment. This nano-system holds promise for synergistic cancer therapy by combining the cytotoxic effects of PDT with the activation of the immune system, providing a novel therapeutic strategy for combating cancer.


Assuntos
Neoplasias Bucais , Nanopartículas , Fotoquimioterapia , Camundongos , Animais , Fármacos Fotossensibilizantes/farmacologia , Verteporfina/uso terapêutico , Fototerapia , Neoplasias Bucais/tratamento farmacológico , Nanopartículas/química , Modelos Animais de Doenças , Linhagem Celular Tumoral
18.
JACS Au ; 3(10): 2873-2882, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37885572

RESUMO

Dynamic monitoring of intracellular ubiquitin (Ub) conjugates is instrumental to understanding the Ub regulatory machinery. Although many biochemical approaches have been developed to characterize protein ubiquitination, chemical tools capable of temporal resolution probing of ubiquitination events remain to be developed. Here, we report the development of the first cell-permeable and stimuli-responsive Ub probe and its application for the temporal resolution profiling of ubiquitinated substrates in live cells. The probe carrying the photolabile group N-(2-nitrobenzyl)-Gly (Nbg) on the amide bond between Ub Gly75 and Gly76 is readily prepared through chemical synthesis and can be delivered to live cells by conjugation via a disulfide bond with the cyclic cell-penetrating peptide cR10D (i.e., 4-((4-(dimethylamino)phenyl)-azo)-benzoic acid-modified cyclic deca-arginine). Both in vitro and in vivo experiments showed that Ub-modifying enzymes (E1, E2s, and E3s) could not install the Ub probe onto substrate proteins prior to removal of the nitrobenzyl group, which was easily accomplished via photoirradiation. The utility and practicality of this probe were exemplified by the time-resolved biochemical and proteomic investigation of ubiquitination events in live cells during a H2O2-mediated oxidative stress response. This work shows a conceptually new family of chemical Ub tools for the time-resolved studies on dynamic protein ubiquitination in different biological processes and highlights the utility of modern chemical protein synthesis in obtaining custom-designed tools for biological studies.

19.
MedComm (2020) ; 4(5): e338, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37600507

RESUMO

Aconitum carmichaelii (Fuzi) is a traditional Chinese medicine that has been widely used in the clinic to save the dying life for over several thousand years. However, the medicinal components of Fuzi in treating vascular senescence (VS) and its potential mechanism remain unclear. In this study, a network pharmacology method was used to explore the possible components and further validated by experiments to get a candidate compound, deoxyandrographolide (DA). DA restrains aging biomarkers, such as p16, p21, γH2A.X, and p53 in vitro and in vivo blood co-culture studies. Histone deacetylase 1 (HDAC1), mouse double minute2 (MDM2), cyclin-dependent kinase 4, and mechanistic target of rapamycin kinase (mTOR) are predicted to be the possible targets of DA based on virtual screening. Subsequent bio-layer interferometry results indicated that DA showed good affinity capability with HDAC1. DA enhances the protein expression of HDAC1 in the angiotensin II-induced senescence process by inhibiting its ubiquitination degradation. Loss of HDAC1 by CRISPR/Cas9 leads to the disappearance of DA's anti-aging property. The enhancement of HDAC1 represses H3K4me3 (a biomarker of chromosomal activity) and improves chromosome stability. RNA sequencing results also confirmed our hypothesis. Our evidence illuminated that DA may achieve as a novel compound in the treatment of VS by improving chromosome stability.

20.
Int J Dev Disabil ; 69(5): 728-737, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547559

RESUMO

Background: Typically developing (TD) siblings play a crucial role in promoting the health and well-being of adults with intellectual disabilities. Their involvement in the sibling relationship during adulthood may predict their likelihood of providing care to the sibling with intellectual disabilities (ID). However, different types of motivations (discretionary and obligatory) related to the contact frequency of TD siblings have not been fully explored. Little is known about how their negative experiences, such as affiliated stigma, influences relational motivations, which consequently affect contact frequency. This study examined these links in a Chinese context. Method: In total, 1,298 Chinese siblings were surveyed using questionnaires, and structural equation modelling was used to test the mediation effect. Results: Contact frequencies of TD siblings were significantly affected by discretionary motivation, obligatory motivation, and stigma experiences. The findings supported the mediating effect of obligatory motivation in the relationship between affiliated stigma and contact frequency. Conclusion: This study is among the first to examine whether the relational motivation of TD siblings predicts their contact frequency within their relationships with adult siblings with ID. We found that both types of relational motivations of TD siblings positively predicted contact behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...